SSC CGL MOCK-II 1

> ANSWER KEY

1. (c)	2. (d)	3. (a)	4. (b)	5. (b)	6. (b)	7. (a)	8. (a)	9. (a)	10. (c)
11. (d)	12. (d)	13. (d)	14. (a)	15. (c)	16. (b)	17. (a)	18. (b)	19. (c)	20. (c)
21. (b)	22. (c)	23. (d)	24. (d)	25. (c)	26. (a)	27. (b)	28. (d)	29. (c)	30. (d)
31. (b)	32. (d)	33. (b)	34. (c)	35. (c)	36. (b)	37. (d)	38. (a)	39 . (a)	40. (a)
41 . (d)	42. (b)	43. (c)	44. (a)	45. (b)	46. (d)	47. (d)	48. (b)	49. (d)	50. (b)
51 . (a)	52. (d)	53. (c)	54. (b)	55. (b)	56. (b)	57. (d)	58. (a)	59. (b)	60. (b)
61. (c)	62. (d)	63. (c)	64 . (a)	65. (d)	66. (b)	67. (a)	68. (d)	69. (a)	70. (b)
71 . (a)	72. (a)	73. (d)	74. (d)	75. (b)	76. (a)	77. (a)	78. (b)	79. (d)	80. (b)
81. (c)	82. (d)	83. (a)	84. (c)	85. (b)	86. (d)	87. (b)	88. (c)	89. (a)	90. (d)
91 . (a)	92. (d)	93. (c)	94. (a)	95. (d)	96. (d)	97. (a)	98. (a)	99. (c)	100. (b)
				TT. (O C		7 ` '			

Hint & Solutions

- 2. (D) 31-2-1970, The second month of a year is February, which has 28 days in a normal year and 29 days in a leap year.

Hence, the given date is False.

- 4. **(B)** The word **STENT** can't be formed by using the letters of the 'SHIPMENT', because there is only one T' present in 'SHIPMENT'.
- 5. **(B)** 3 0 0 → GOD 5 COVD 0 0 7 → COVD 5 BEAUTIFUL
- 6. **(B)** $4 \times 36 = 144 (12^2) 13 \times 13 = 169 (13^2)$ 12 13 $8 \times 32 = 256 (16^2)$

(A) Solving from the choices:
(A) Inserting the operators (×, ÷, -, =)
We get,

$$5 \times 3 \div 3 - 5 = 0$$
 [Use 'BODMAS' rule]
 $5 - 5 = 0 \implies 0 = 0$

(B) Inserting the operators $(+, -, \div, =)$ We get.

$$5 - 3 - 3 \div 5 = 0$$
 [Use BODMAS' rule]

$$5 + 3 - .6 = 0 \Rightarrow 8 - .6 = 0 \Rightarrow 7.4 \pm 0$$

(C) Inserting the operators $(\div, -, +, =)$ We get,

$$5 - 3 - 3 + 5 = 0$$
 [Use BODMAS rule]
2 + 2 = 0 \Rightarrow 4 \neq 0

(D) Inserting the operators $(-, \times, \div, =)$ We get,

$$5 - 3 \times 3 \div 5 = 0$$
 [Use BODMAS rule]

$$5-3 \times 0.6 = 0 \Rightarrow 5-1.8 = 0 \Rightarrow 3.2 \neq 0$$

8. (A)

9. (A) A line in an appointment letter is "the performance of an individual generally is not known at the time of appointment".

Hence. only assumption I is implicit

- **10. (C)** Cataract disease related to eye. Similarly, Pneumonia disease related to **lungs**.
- Reverse Position of the English Alphabet

- 13. (D) Jostle, Nudge and Push are synonyms and all are related to push, but
 Trash is related to junk.
- **14. (A)** 27, 64 and 8 are the perfect cubes of 3, 4 and 2 respectively, but **9** is perfect square of 3.

Hence, the meaningful order is [2, 3, 1, 4, 5].

Hence, as per the English dictionary, the correct order is [5, 1, 4, 2, 3].

When two symbols/numbers are common in two faces of one dice. Then the third symbol/number are opposite to each other. Thus, \bigcirc opposite is \bigcirc .

(D) **11, 66, 12, 20, 56**

- **24. (D)** Solving from the options. (A) 11, 66, 57, 20, 76 (B) 20, 76, 12, 57, 66 (C) 66, 12, 20, 11, 57
- 25. (C) $1 + \frac{1}{2a} = \frac{1}{2a} \times 2b$

$$\frac{x}{a+b} = \frac{x}{a+b}$$

$$\frac{x}{2a} = \frac{2b}{a+b} \text{ and}$$

$$\frac{x}{2b} = \frac{2a}{a+b}$$

Applying componendo and Dividendo rule $\frac{x+2a}{x-2a} + \frac{x+2b}{x-2b} = \frac{3b+a}{b-a} + \frac{3a+b}{a-b}$ $= \frac{3b+a}{b-a} - \frac{3a+b}{b-a}$ $= \frac{2b-2a}{b-a} = 2$

52.
$$a+b+c=4$$
 ...(i)
$$ab+bc+ca=-2$$
 ...(ii)
Squaring equation (i)
$$a^2+b^2+c^2+2(ab+bc+ca)=16$$

$$\therefore a^2+b^2+c^2+2\times(-2)=16$$

$$\therefore a^2+b^2+c^2=16+4=20$$
 ...(iii)
$$\therefore (a+b)^2+(b+c)^2+(c+a)^2$$

$$=a^2+b^2+2ab+b^2+c^2+2bc+c^2+a^2+2ac$$

$$=2(a^2+b^2+c^2)+2(ab+bc+ac)$$

$$=2\times 20+2\times(-2)=40-4=36$$

$$= 2 \times 20 + 2 \times (-2) = 40 - 4 = 36$$
53.
$$\cos \theta + \frac{1}{\tan \theta} = 5$$

$$\csc \theta + \cot \theta = 5 \qquad \dots(i)$$

$$\left(\because \frac{1}{\tan \theta} = \cot \theta\right)$$

SSC CGL MOCK-II 3

$$\because \qquad \csc^2\theta - \cot^2\theta = 1$$

 $\therefore (\csc\theta + \cot\theta)(\csc\theta - \cot\theta) = 1$

$$\therefore \qquad \cos \theta - \cot \theta = \frac{1}{5} \qquad \dots (iii)$$

Solving equation (i) and (ii)

$$\csc\theta - \cot\theta = 5$$

$$\frac{-\csc\theta - \cot\theta = 5}{2\cot\theta = -\cot\theta = \frac{1}{-5}} = \frac{25 - 1}{5} = \frac{24}{5}$$

$$\cot \theta = \frac{24}{5 \times 2} = \frac{12}{5}$$

$$\frac{\sin\theta}{\cos\theta} = \tan\theta = \frac{5}{12}$$

$$54. \quad \frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}}$$

$$= \frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$$
$$= 2 \left[\frac{\frac{1}{2} \cos 10^{\circ} - \frac{\sqrt{3}}{2} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}} \right]$$

$$= 2 \left\lceil \frac{\sin 30^{\circ} \cdot \cos 10^{\circ} - \cos 30^{\circ} \sin 10^{\circ}}{\sin 10^{\circ} \cdot \cos 10^{\circ}} \right\rceil$$
$$= \frac{2 \sin (30^{\circ} - 10^{\circ})}{\sin 10^{\circ} \cdot \cos 10^{\circ}} = \frac{2 \cdot 2 \sin 20^{\circ}}{2 \sin 10^{\circ} \cos 10^{\circ}}$$
$$= \frac{4 \sin 20^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}} = 4$$

55.

Given

::

•:•

$$AB = AC$$
 $\angle B = \angle C$ (Angle of equal sides)
 $\angle A = 2\angle B$
 $\angle A + \angle B + \angle C = 180^{\circ}$
 $2\angle B + \angle B + \angle B = 180^{\circ}$
 $4\angle B = 180^{\circ}$
 $\angle B = 45^{\circ}$

$$2/B = A$$

$$2\angle B = \angle A$$

 $\angle A = 90^{\circ}$

So, $\triangle ABC$ is a right angled triangle In $\triangle ABC$

$$AB^{2} + AC^{2} = BC^{2}$$

$$2AC^{2} = BC^{2}$$

$$BC = AC\sqrt{2}$$

$$BC = 4\sqrt{2} \text{ cm}$$
∴ Circumradius
$$(R) = \frac{BC}{2} = 2\sqrt{2}$$

Incircle radius (r) =
$$\frac{a+b-c}{2}$$

= $\frac{8-4\sqrt{2}}{2} = 4-2\sqrt{2}$
 $r: R = (4-2\sqrt{2}): 2\sqrt{2}$
= $2-\sqrt{2}: \sqrt{2} = (\sqrt{2}-1): 1$

56. In Δ*ABC*

٠.

$$\angle A + \angle B + \angle C = 180^{\circ}$$

 $\angle B = 180^{\circ} - 75^{\circ} - 85^{\circ}$
 $= 180^{\circ} - 160^{\circ} = 20^{\circ}$

Then

In
$$\triangle OAC$$

$$\angle AOC + \angle OCA + \angle OAC = 180^{\circ} \qquad [\because OC = OA]$$

$$40^{\circ} + 2\angle OAC = 180^{\circ}$$

$$2\angle OAC = 140^{\circ} \Rightarrow \angle OAC = 70^{\circ}$$

 $\angle AOC = 40^{\circ}$

57.

Area of $\triangle ABCD / \triangle ABCD$ $= AB + BC = 15 \times 14 = 210 \text{ cm}^2$ Area of $\triangle ABCE / \triangle BCE$

$$= \frac{1}{2} \times BC \times EC$$

$$= \frac{1}{2} \times 14 \times 8 = 56 \text{ cm}^2$$

$$= \frac{1}{2} \times AF \times AG = \frac{1}{2} \times 6 \times 7$$

$$= 21 \text{ cm}^2$$

Area of shaded portion Area of shaded

$$\Delta ABCD / \Delta ABCD$$

= 210 - 56 - 21
= 133 cm²

58.

Let AB and CE are two poles of height 40 m and 5 m respectively.

AE is the length of wire which is connected with two poles

$$\sin 60^{\circ} = \frac{ED}{AE} = \frac{\sqrt{3}}{2}$$

$$12 \quad \sqrt{3}$$

$$\therefore \frac{12}{AE}$$

$$AE = 8\sqrt{3} \text{ meters}$$

:. Length of the wire

 $= 8\sqrt{3}$ meters

Let AC is 300 meter long thread and AB is height of kite from ground

$$\therefore$$
 In $\triangle ABC / \triangle ABC$

$$\sin 60^{\circ} = \frac{AB}{AC}$$

$$\therefore \qquad \frac{\sqrt{3}}{2} = \frac{AB}{300}$$

$$\therefore \qquad AB = 150\sqrt{3}$$

: height of the kite from ground

 $= 150\sqrt{3}$ meter

60. Let the certain distance is x km

Time taken by first man = $\frac{x}{8}$

$$\frac{x}{6} - \frac{x}{8} = \frac{1}{2}$$

$$\frac{4x - 3x}{24} = \frac{1}{2}$$

$$\frac{x}{24} = \frac{1}{2}, x = 12 \text{ km}$$

∴ Certain distance = 12 km

61. Let the radius of the cylinder

After 20% increasing
$$= r$$

$$= r \times \frac{120}{100} \setminus 1.2r$$
Height $= h$
Volume $= \pi \times 1.2r \times 1.2r \times h$
 $= 1.44\pi r^2 h$

Volume remains unchanged, So decrement in height

$$= \frac{.44\pi r^2 h}{1.44\pi r^2 h} \times 100 = \frac{44}{144} \times 100$$
$$= \frac{11}{36} \times 100 = \frac{11 \times 25}{9} = \frac{275}{9} = 30\frac{5}{9}\%$$

٠.

62. Perimeter of base of cone = $2\pi r$

$$2 \times \frac{22}{7} \times r = 12$$

$$r = \frac{21}{11} \text{ cm}$$

∴ Volume of cones
$$= \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3} \times \frac{22}{7} \times \frac{21}{11} \times \frac{21}{11} \times 42$$
$$= 160.36 \text{ cm}^3$$

63. Let the cost price and selling price are 12x and 15x respectively

∴ Profit
$$= SP$$

$$= 15x - 12x = 3x$$

$$= \frac{3x \times 100}{12x} = 25\%$$

64. Let the principal -x

Total amount
$$= 2x$$
Rate
$$= 14\frac{2}{7}\% = \frac{100}{7}\%$$

$$\therefore SI = 2x - x = x$$

$$= \frac{P \times R \times T}{100}$$

$$\therefore T = \frac{100 \times SI}{P \times R}$$

$$= \frac{100 \times x}{x \times \frac{100}{7}}$$

$$= 7 \text{ years}$$

65. Quantity of milk in the 1st mixture

$$=\frac{4}{9}$$

Quantity of milk in the 2nd mixture

$$=\frac{2}{9}$$

Quantity of milk in new mixture

$$=\frac{1}{3}$$

By using allegation rule

66.
$$A:B = 5:3, B:C = 6:11$$

$$A:B:C = 10:6:11$$

67. One day work of A and B

B's one day work
$$=\frac{1}{15}$$
∴ *A*'s one day work $=\frac{1}{5} - \frac{1}{15} = \frac{3-1}{15} = \frac{2}{15}$
 $=7\frac{1}{2}$

68.
$$999\frac{1}{7} + 999\frac{2}{7} + 999\frac{3}{7} + 999\frac{4}{7} + 999\frac{5}{7} + 999\frac{6}{7}$$

$$= \left(999 + \frac{1}{7}\right) + \left(999 + \frac{2}{7}\right) + \dots + \left(999 + \frac{6}{7}\right)$$

$$= 999 \times 6 + \left(\frac{1}{7} + \frac{2}{7} + \frac{3}{7} + \frac{4}{7} + \frac{5}{7} + \frac{6}{7}\right)$$

$$= 5994 + \frac{21}{7} = 5997$$

 \therefore Ratio of girls and boys = 2:3

70. Let the number of boys and girls be 4x and 5x respectively

The number of boys who do not get scholarship

$$= 4x \times (100 - 25)\%$$
$$= 4x \times \frac{75}{100} = 3x$$

The number of girls who do not get scholarship

$$= 5x \times (100 - 40)\% = 5x \times 60\% = 3x$$

.. Total students who do not get scholarship

$$3x + 3x = 6x$$

$$\therefore \text{ Required percentage } = \frac{6x + 100}{9x} = 66\frac{2}{3}\%$$

71. Difference between target set and the actual production for the year 2000-01

$$= 17000000 - 1300000000$$

 $= 40,00000$

72. Let the actual production of cricket balls in 2001-02 was x times of the target production

$$\therefore$$
 430000000 × $x = 490000000$

$$x = \frac{490000000}{430000000} = 1.14$$

73. Number of years in which actual production was above to the target production of the cricekt balls

74. Actual production of cricket balls in years 2001-01

Target production of cricket balls in 1999-00 = 320,0000000

.. Required percent

$$=\frac{120,00000\times100}{320,00000}=40.6\%$$

75. Let the each edge of a cube is x meter

.. Surface are
$$= 6x^{2}$$
New side
$$= x + x$$

$$50\% = \frac{3x}{2}$$

.. New surface are

$$= 6 \times \left(\frac{3x}{2}\right)^2$$

$$= 6 \times \frac{9x^2}{4} = \frac{27x^2}{2}$$
Increase in surface are
$$= \frac{27x^2}{2} - \frac{6x^2}{1}$$

$$= \frac{27x^2 - 12x^2}{2} = \frac{15x^2}{2}$$

$$= \frac{15x^2}{2} = 100$$

Percentage increase $= \frac{\frac{15x^2}{2} \times 100}{6x^2} = 125\%$